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Kingman’s coalescent process opens the door for estimation of population genetics model parameters from molecular
sequences. One paramount parameter of interest is the effective population size. Temporal variation of this quantity
characterizes the demographic history of a population. Because researchers are rarely able to choose a priori
a deterministic model describing effective population size dynamics for data at hand, nonparametric curve-fitting
methods based on multiple change-point (MCP) models have been developed. We propose an alternative to change-point
modeling that exploits Gaussian Markov random fields to achieve temporal smoothing of the effective population size in
a Bayesian framework. The main advantage of our approach is that, in contrast to MCP models, the explicit temporal
smoothing does not require strong prior decisions. To approximate the posterior distribution of the population dynamics,
we use efficient, fast mixing Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. In
a simulation study, we demonstrate that the proposed temporal smoothing method, named Bayesian skyride, successfully
recovers ‘‘true’’ population size trajectories in all simulation scenarios and competes well with the MCP approaches
without evoking strong prior assumptions. We apply our Bayesian skyride method to 2 real data sets. We analyze
sequences of hepatitis C virus contemporaneously sampled in Egypt, reproducing all key known aspects of the viral
population dynamics. Next, we estimate the demographic histories of human influenza A hemagglutinin sequences,
serially sampled throughout 3 flu seasons.

Introduction

Accurate estimation of population size dynamics has
important implications for public health and conservation
biology (Pybus et al. 2003; Shapiro et al. 2004; Biek
et al. 2006). In this paper, we propose a statistically novel
model to infer population size dynamics from molecular se-
quences. We build our modeling framework upon Kingman’s
coalescent process, a powerful tool in the population genet-
ics arsenal for studying probabilistic properties of genealogies
relating individuals randomly sampled from a population of
interest (Kingman 1982). Because genealogical shapes leave
their imprints in the genomes of sampled individuals, the co-
alescent allows for the inference of population genetics pa-
rameters, including population size dynamics, directly from
the observed genomic sequences (Hein et al. 2005).

Many coalescent-based estimation algorithms rely on
simple parametric forms to characterize the evolution of the
population size dynamics over time. Advantageously, these
deterministic functions contain a relatively small number of
parameters to be estimated (Kuhner et al. 1998; Drummond
et al. 2002). However, justifying strong parametric assump-
tions can be difficult and may require laborious and com-
putationally expensive testing of many candidate functional
forms to find an appropriate description of the population
size trajectory. An extreme alternative to parametric popu-
lation size models is the classical skyline plot estimation
proposed by Pybus et al. (2000). This estimation procedure
relies on a piecewise constant population dynamics model.
Because the number of free parameters in this model is
equal to the number of independently distributed observa-
tions, the classical skyline plot approach results in very
noisy estimates.

To arrive at a middle ground between overly stringent
parametric and noisy classical skyline plot approaches, 3
extensions to the classical skyline plot estimation have been
recently proposed. Strimmer and Pybus (2001) develop
generalized classical skyline plot estimation. These authors
employ a model selection approach, based on the Akaike
Information Criterion correction (AICc), to reduce the
number of free parameters in the classical skyline plot.
Drummond et al. (2005) and Opgen-Rhein et al. (2005)
use multiple change-point (MCP) models to estimate the
population size dynamics in a Bayesian framework. These
methods approximate the effective population size trajec-
tory with a step function, defined by estimable change-point
locations and step heights. One of the main advantages of
MCP models is the ease of incorporating them into a joint
Bayesian estimation of genealogies and population genetics
parameters as demonstrated by Drummond et al. (2005).
Both proposed MCP models share the same weakness as
they require fairly strong prior decisions. Drummond
et al. (2005) a priori fix the total number of change points,
a critical parameter in their model that controls the smooth-
ness of the population size trajectory. Opgen-Rhein et al.
(2005) bypass the problem of fixing the number of change
points through reversible jump Markov chain Monte Carlo
(MCMC) sampling (Green 1995). However, these authors
use an informative and very influential prior for the number
of change points in their model. Therefore, in both MCP
approaches choosing an appropriate level of smoothness
of population size dynamics remains problematic.

We propose to smooth population size trajectories ex-
plicitly. We choose piecewise constant demographic model
of Pybus et al. (2000) as our point of departure. Our goal is
to construct a smooth skyride through a rough classical sky-
line profile. Our construction is accomplished by imposing
a Gaussian Markov random field (GMRF) smoothing prior
on the parameters of the piecewise constant population size
trajectory. We make our smoothing prior ‘‘time aware’’ to
penalize effective population size changes between ‘‘small’’
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consecutive (Ghedin et. al 2005) intercoalescent intervals
more than changes between intervals of larger size. To
achieve this desirable behavior of our smoothing prior,
we equip each consecutive pair of intercoalescent intervals
with an appropriate smoothing weight. We show through
a simulation study that the time-aware prior is very effective
in capturing important characteristics of ‘‘true’’ population
size trajectories and is superior to a uniform, time-ignorant
GMRF prior. The extension of Kingman’s coalescent to se-
rially sampled (heterochronous) data by Rodrigo and
Felsenstein (1999) opens the door for coalescent-based in-
ference for measurably evolving populations (Drummond
et al. 2003). We show that the GMRF smoothing can be
easily incorporated into analyses of both isochronous (con-
temporaneously sampled) and heterochronous data.

Through simulation, we compare performance of the
Bayesian skyride with Opgen-Rhein’s MCP (ORMCP)
model (Opgen-Rhein et al. 2005) and a Bayesian skyline
plot, a MCP model implemented in the software package
BEAST (Drummond et al. 2005). In 3 simulation scenarios
that we consider, we find that the Bayesian skyride per-
forms as well or better than both MCP approaches. Al-
though the small number of our simulations prevent us
from a detailed comparison of the methods, we nevertheless
can conclude that the Bayesian skyride is a competitive al-
ternative to the MCP models and requires substantially
weaker prior assumptions. We demonstrate the utility of
the proposed method by applying it to 2 real data sets.
We analyze isochronous sequences of hepatitis C virus
(HCV) and demonstrate that the Bayesian skyride is able
to recover all previously inferred characteristics of the
Egyptian HCV population dynamics. We proceed with
an investigation of intraseason population dynamics of hu-
man influenza virus. Our analysis of heterochronous influ-
enza data from 3 seasons demonstrates that estimation of
influenza population dynamics holds promise for predicting
peak infection time within a flu season.

Methods
Coalescent Background

We start with a random population sample of n se-
quences. Coalescent theory provides a stochastic process
that produces genealogies relating these sampled sequen-
ces. The process starts at sampling time t5 0 and proceeds
backward in time as t increases, coalescing n individuals
one pair at a time until the time to the most recent common
ancestor (TMRCA) of the sample is reached (Kingman
1982). In this work, we ignore extensions of the coalescent
that allow for modeling of the effects of selection (Krone
and Neuhauser 1997), population structure (Notohara
1990), and recombination (Hudson 1983). Instead, we fo-
cus on the coalescent with variable effective population
size.

The effective population size is an abstract quantity
that brings populations with different reproductive models
to a ‘‘common denominator,’’ namely the Wright–Fisher
model (Kingman 1982). One can obtain the census popu-
lation size by appropriate scaling of the effective population
size. Because the dynamics of the effective population size

plays a very important role in shaping coalescent-based ge-
nealogies, it should be possible to solve the inverse problem
and recover the effective population size trajectories from
known genealogies.

We assume for the moment that g is a known geneal-
ogy relating the n sampled sequences. Suppose that func-
tion Ne(t) describes the time evolution of the effective
population size as we move into the past. Given Ne(t),
we need to compute the probability of observing g under
the coalescent with variable population size. To achieve
this, it suffices to construct a probability density function
over the intercoalescent times u5ðu2; . . . ; unÞ induced by
g, where uk 5 tk � tk � 1, tk is the time of the (n � k)th
coalescent event for k52; . . . ; n and tn 5 0 is the time at
which sequences are sampled (Felsenstein 1992; Pybus
et al. 2000). Griffiths and Tavaré (1994) show that the joint
density of intercoalescent times can be obtained by multi-
plying conditional densities

Pr

�
uk

����tk
�
5

kðk � 1Þ
2Neðuk þ tkÞ

exp

�
�

Z uk þ tk

tk

kðk � 1Þ
2NeðtÞ

dt

�
;

ð1Þ

where time is measured in units of generations. Given a
simple parametric form for Ne(t), it is straightforward to es-
timate the parameters characterizing Ne(t) in a likelihood-
based framework, possibly integrating over genealogies
using MCMC sampling (Kuhner et al. 1998; Drummond
et al. 2002). However, lack of prior knowledge about the
appropriate parametric form for Ne(t) stimulates the current
development of nonparametric and semiparametric methods
of estimating Ne(t) (Pybus et al. 2000; Drummond et al.
2005; Opgen-Rhein et al. 2005).

Piecewise Demographic Model for Isochronous Data

Let us assume that all sampled sequences were col-
lected effectively at the same time, meaning that differences
between sampling times are negligible compared with the
TMRCA of the sample. We start with a critical assumption
that Ne(t) can change its value only at coalescent times,
Ne(t) 5 hk for some hk . 0 and tk , t � tk–1,
k52; . . . ; n: Informally, we can plug the piecewise constant
Ne(t) into equation (1) and arrive at

Pr

�
uk

����hk
�
5

kðk � 1Þ
2hk

exp

�
� kðk � 1Þuk

2hk

�
: ð2Þ

See Pybus et al. (2000) and Strimmer and Pybus (2001) for
more details on the likelihood of the piecewise demo-
graphic model. It is important to notice that because the
right-hand side of equation (2) does not depend on tk, in-
tercoalescent intervals u are independent of each other un-
der the piecewise constant demographic model. Therefore,
estimating interval-specific population sizes hk is equivalent
to estimating the rate of an exponential distribution after
drawing only a single realization from this distribution.
Maximizing likelihood function (2) with respect to hk yields

ĥk 5
kðk � 1Þuk

2
: ð3Þ
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Such estimators of interval-specific population sizes are
called classical skyline plots (Pybus et al. 2000). Strimmer
and Pybus (2001) quickly recognize that estimators (3)
have substantial variance resulting from overfitting and in-
troduce a generalized skyline plot. In their new method, the
authors restrict the number of different population sizes
across intervals. Intervals that do not exceed a predefined
threshold e borrow their population sizes from the neigh-
boring intervals. The authors choose e by maximizing a sec-
ond-order extension of the AICc. The Bayesian skyline plot
of Drummond et al. (2005) groups intervals using a MCP
model providing a Bayesian extension of the generalized
skyline plot.

Throughout this section, we have assumed that time
is measured in units of generations. When analyzing iso-
chronous data, branches of genealogies are often estimated
in units of average number of substitutions per site. Even
if we are able to estimate branches in units of clock time,
the generation time may be unknown. However, this in-
ability to identify time in units of generations does not
limit estimation of the dynamics of demographic histories.
If estimated intercoalescent intervals are not measured in
units of generations and are rescaled as uk5cuk; then plug-
ging u�ks into the likelihood function (2), we can recover
the rescaled effective population size trajectory
N�

e

�
t
�
5cNe

�
t
�
:

Piecewise Demographic Model for Heterochronous Data

We now turn to the piecewise demographic model for
sequences sampled at sufficiently different time points. As
before, we assume that genealogy g relating the sampled
sequences is known and fixed. Moreover, branch lengths
of g satisfy constraints imposed by sampling times s.
The sampling times divide each intercoalescent interval k into
subintervalswk5

�
wk0; . . . ;wkjk

�
;where jk 2 f0; . . . ; n� 1g

is the number of ‘‘distinct’’ sampling times occurring during
interval k,

Pjk
j50 wkj5uk; and the interval that ends with the

(n � k)th coalescent event is always indexed by k0. To each
subinterval kj, we attach the number of lineages nkj present in
the genealogy at the beginning of this interval. See figure 1
for an example genealogy with labeled intercoalescent inter-
vals, subintervals, and numbers of lineages. For heterochro-
nous data, we still assume thatNe(t)5 hk for some hk. 0 and
tk , t � tk–1 for k52; . . . ; n:

Rodrigo and Felsenstein (1999) extend the coalescent
likelihood to incorporate heterochronous data. The authors
distinguish between coalescent and sampling events. In our
notation, subintervals labeled as k0 end with a coalescent
event. Each such subinterval contributes an exponential
density to the coalescent likelihood, where the exponential
rate depends on the number of lineages present and the ef-
fective population size in the interval. Subintervals ending
with a sampling event contribute to the likelihood the prob-
ability of no coalescence or equivalently the probability that
an exponentially distributed coalescence time is greater
than the subinterval length. Because in our notation only
subintervals with indices k0 end with a coalescence event,
the likelihood of observing subintervals wk comprising in-
tercoalescent interval k is

PrðwkjhkÞ5
nk0ðnk0 � 1Þ

2hk

exp

"
�

Pjk
j5 0 nkj

�
nkj � 1

	
wkj

2hk

#
:

ð4Þ

The maximum likelihood estimate of the piecewise con-
stant effective population size is

ĥk 5

Pjk
j5 0 nkj

�
nkj � 1

	
wkj

2
: ð5Þ

By analogy with the likelihood for isochronous data, Pybus
and Rambaut (2002) call estimates (5) a classical skyline
plot. The authors group intercoalescent intervals using
the same AIC-based algorithm as in the isochronous case
to arrive at a generalized skyline plot.

Working with heterochronous data has 2 major advan-
tages. First, such data allow one to estimate branch lengths
of genealogies in units of time and simultaneously estimate
the mutation rate (Drummond et al. 2002, 2003). Secondly,
the sampling times provide additional information for the
effective population size estimation. Although the sampling
subintervals do not allow one to observe more coalescence
events, these subintervals serve as censored time-to-event
data. Unfortunately, because there are at most n distinct
sampling times, the improvement in the information content
may not be dramatic. Therefore, estimation of intercoales-
cent interval-specific effective population sizes remains
problematic without further modifications.

Temporally Smoothed Piecewise Demographic Model

Because the heterochronous likelihood (4) reduces to
the isochronous likelihood (2) when jk 5 0 for all

Number of Lineages:

w51w50 w52

u3 u4 u5

w30 w40

u2

w20

343432 1

w41

FIG. 1.—Example of a genealogy with intercoalescent interval
notation. Times of coalescence and sampling events are depicted as vertical
dashed lines with numbers of lineages present at these times shown above
the lines. Below the genealogy, we mark the boundaries of intercoalescent
intervals together with their lengths ðu2; . . . ; u5Þ: We show how sampling
events interrupt the intercoalescent intervals and produce subintervals with
lengths ðw20; . . . ;w52Þ at the bottom of the figure.
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k52; . . . ; n, from now on we assume that that observed data
come in the form of intercoalescent subintervals
w5ðw2; . . . ;wnÞ: We first transform the intercoalescent in-
terval-specific effective population sizes onto the whole real
line via

ck 5 loghk; k5 2; . . . ; n; ð6Þ

and following equation (4), consider the likelihood

PrðwjcÞ5
Yn
k5 2

PrðwkjckÞ; ð7Þ

where c5ðc2; . . . ; cnÞ:
We invoke a common assumption stating that the ef-

fective population size changes continuously through time.
To infuse this minimal prior knowledge into our Bayesian
model, we devise a GMRF prior distribution for the vector
c. This prior penalizes the differences between components
of c as

PrðcjsÞ}sðn� 2Þ=2exp

"
� s

2

Xn� 1

k5 2

�
ckþ 1 � ck

�2

dk

#
; ð8Þ

where s is the overall precision of the GMRF and dk is the
distance between sites k þ 1 and k on the 1-dimensional
lattice f2; . . . ; ng: A uniform GMRF smoothing with
equal distances d25 � � �5dn�151 is often assumed
for temporal and spatial smoothing. However, in the
piecewise demographic model, the penalty for the dissim-
ilarity between adjacent intercoalescent, interval-specific,
effective population sizes should depend on the interval
sizes. Therefore, we construct a time-aware GMRF prior
based on midpoint distances between intercoalescent
intervals,

dk 5
uk þ ukþ 1

2
: ð9Þ

Midpoint distances have been successfully used before in
molecular evolution by Thorne et al. (1998) to construct
an autocorrelated prior for evolutionary rates on genealogy
branches. The midpoint distances’ 2D analogs, the distan-
ces between centroids of 2-dimensional areas, are widely
used in spatial statistics (Elliott et al. 2000).

We conclude our prior specification by assigning
a gamma prior to the GMRF precision parameter s,

PrðsÞasa� 1e� bs: ð10Þ

Bernardinelli et al. (1995) highlight the importance of priors
for the GMRF precision parameter and advise against dif-
fuse priors. However, a researcher normally has no knowl-
edge about the smoothness of the effective population size
trajectory a priori. Therefore, in our examples, we choose
a 5 b 5 0.001 making prior (10) relatively uninformative,
with expectation 1 and variance 1,000.

We estimate c and s by MCMC sampling from the
posterior distribution of these parameters. Moreover, we
implement our Bayesian skyride method in the software
package BEAST to estimate effective population size
trajectories and genealogies simultaneously. The details
of our MCMC algorithm can be found in Appendix A.

Appendix B contains instructions on using the Bayesian
skyride in BEAST.

Testing Significance of the Effective Population Size
Changes

It is common to assess significance of effective pop-
ulation size changes by visually inspecting quantiles of the
marginal posterior distributions of effective population
sizes. Such an informal approach can be deceptive. In us-
ing it, one attempts to draw conclusions about the differ-
ence of 2 possibly highly correlated random variables
based on their marginal distributions. Moreover, the cor-
relation between values of the effective population size
cannot be ignored if we indeed believe that Ne(t) changes
continuously through time. As an alternative, we propose
to use Bayes factors to formally test the significance of
effective population size changes when g is assumed to
be known.

We start with a 1-sided hypothesis test. Suppose that
we a priori fix 2 intercoalescent intervals i , j that corre-
spond to some historical events of interest. Then, we may be
interested in testing hypotheses H0:ci , cj versus H1:ci �
cj. The Bayes factor

B01 5
PrðwjH0Þ
PrðwjH1Þ

5
PrðH0jwÞ=PrðH0Þ
PrðH1jwÞ=PrðH1Þ

: ð11Þ

allows one to quantify the evidence in favor of the null hy-
pothesis H0 and against the alternative H1 (Kass and Raftery
1995). Through the ergodic theorem, we approximate the
posterior probability Pr(H0|w) with a fraction of MCMC
samples satisfying ci, cj. The GMRF prior (8) implies that

ci � cj

���� s;N

�
0;

Pj�1

k5i
dk

s

�
: Therefore, Pr(H0) 5 Pr(H1) 5

0.5 regardless of the prior choice for s as long as the prior is
proper.

Clearly, this 1-sided test is impractical if the direction
of the effective population size change is irrelevant or if one
is interested in testing effective population size differences
among multiple intercoalescent intervals. Therefore, we
also consider the hypothesis H0 : ci15 � � �5cij ; where

i1; . . . ; ij

�
is a subset of f2; . . . ; ng: The alternative hy-

pothesis H1 states that not all ci1 ; . . . ; cij are equal. To es-
timate the Bayes factor in equation (11), we calculate 2
marginal likelihoods, Pr(w|H0) and Pr(w|H1), from the
MCMC output using the harmonic mean estimator (Newton
and Raftery 1994). This Bayes factor estimation procedure
requires sampling from the posterior distribution of ðs; cÞ
under j � 1 linear constraints on c imposed by hypothesis
H0. Fortunately, sampling from GMRFs under linear con-
straints adds very little computational cost to the uncon-
strained sampling algorithm (Rue and Held 2005).
Because the harmonic mean estimator of the marginal like-
lihood is not the most efficient, one could also use the
method of Chib and Jeliazkov (2001). Alternatively, it
may be possible to adapt the generalized Savage–Dickey
ratio of Verdinelli and Wasserman (1995) to test the sharp
hypothesis H0.
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Results
Simulated Genealogies

We examine the ability of the Bayesian skyride to re-
cover effective population size dynamics in a simulation
study. Because the number of individuals in a population
at time t 5 0 affects only the time measurement units,
we always start with N(0) 5 1.0 in our simulations. First,
we simulate a genealogy assuming the constant population
size. Next, we use the molecular sequence evolution sim-
ulator of Rambaut and Grassly (1997) to generate sequence
data on the tips of the simulated genealogy. We assume
a molecular clock and use the HKY model (Hasegawa
et al. 1985) with a transition/transversion ratio fixed to
2.5. In this and subsequent simulations, we choose mutation
rates such that the root heights of simulated genealogies,
measured in expected number of substitutions per site, vary
between 0.15 and 0.4. Such mutation rates produce sequen-
ces with realistic levels of divergence seen in genomic data
of rapidly evolving pathogens. We choose this parameter
regime because both of our real data examples concern viral
evolution. We summarize our posterior inference results in
figure 2. In the top left plot of this figure, we show the clas-
sical skyline plot based on the simulated genealogy. The
rest of the plots in figure 2 demonstrate results of estimating
the effective population size trajectory using the ORMCP
and Bayesian skyline plot models, fixed-tree time-aware
and uniform Bayesian skyrides, and BEAST Bayesian sky-
ride with the time-aware weighting scheme. The posterior

medians (solid black lines) obtained using the fixed-tree
time-aware and the BEAST Bayesian skyrides nearly per-
fectly match the true effective population size (dashed line
in all 6 plots). The 95% Bayesian credible intervals (BCIs),
shown as gray shaded areas, become wider near the
TMRCA. This behavior is natural because under the con-
stant population size model, the relatively long time to co-
alescence of the last 2 lineages leaves very little information
for effective population size estimation near the root of the
genealogy. Posterior medians of Ne(t), obtained under the
ORMCP and Bayesian skyline plot models, as well as under
the uniform Bayesian skyride, underestimate the effective
population size. It is clear that small intercoalescent inter-
vals, relative to the TMRCA, near the root of the genealogy
mislead these methods. We investigate the effect of this bias
on the frequentist coverage properties of the methods’ 95%
BCIs via a simulation study. After simulating 1,000 gene-
alogies under the constant population size coalescent
model, we analyze these genealogies using the ORMCP
model, fixed-tree uniform, and time-aware Bayesian sky-
rides. We then calculate the percentage of time each meth-
od’s BCIs fully cover the true population size trajectory.
The ORMCP model, uniform, and time-aware Bayesian
skyride coverages amount to 61.8%, 89.9%, and 94.1%, re-
spectively. These numbers clearly illustrate the frequentist
coverage advantages of the time-aware Bayesian skyride.

Next, we simulate a genealogy assuming that Ne(t) 5
e�500t. Because we proceed in time from present to past in
our simulations, the negative growth constant implies an
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FIG. 2.—Constant population size simulation. We present a classical skyline plot (solid black line) in the top left part of the figure. The other 5
plots show posterior median (solid black line) and 95% BCIs (gray shading) of the effective population size under the ORMCP model, Bayesian skyline
plot, time-aware and uniform Bayesian skyrides with a fixed genealogy, and BEAST Bayesian skyride method. In all 6 plots, the dashed lines represent
the true population size trajectory that was used for simulations. Here and in all subsequent plots of effective population sizes, we use the log
transformation of the population size axis.
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exponentially growing population. This exponential growth
is shown on the log scale as a straight dashed line in all plots
of figure 3. All models perform reasonably well in this sim-
ulation. Here, as in the constant population size case, inter-
coalescent intervals near the root of the genealogy cause
estimation problems. One ‘‘unusually’’ large intercoales-
cent interval in this region provokes the uniform Bayesian
skyride, the ORMCP model, and the Bayesian skyline plot
model into overestimating the effective population size in
the proximity of this interval. However, the fixed-tree and
BEAST time-aware Bayesian skyride methods are less
prone to such overestimation. We believe that this desirable
behavior results from our weighting scheme that prohibits
rapid changes of the effective population size during short
time periods.

Finally, we generate a genealogy from a coalescent
process assuming that a population experiences a bottleneck
during the population’s evolutionary history. More specif-
ically, we set

NeðtÞ5

8<
:

e� 10t 0 � t,0:04;
e25t 0:04 � t,0:1; and

e� 50t t � 0:1:

ð12Þ

According to the piecewise exponential function (12), ex-
ponential growth of a population is followed by exponential
decay and then subsequent exponential regrowth. We illus-
trate this demographic history on the log scale with a dashed
piecewise linear curve in all 4 plots of figure 4. Looking at
the classical skyline plot in the top-left corner of figure 4, it
is clear that the simulated intercoalescent intervals do not
permit an accurate and detailed reconstruction of the pop-
ulation dynamics. However, both the fixed-tree and BEAST

time-aware Bayesian skyrides capture all important features
of the true trajectory, some better than the others. For ex-
ample, the initial exponential growth is estimated very well
by this model. The time-aware Bayesian skyride detects the
subsequent decay in the effective population size but does
not fully recover the exponential nature of this decline. The
second exponential growth phase is not recovered well.
However, the posterior distribution of the effective popula-
tion size under the time-aware Bayesian skyride suggests
that the population bottleneck is indeed followed by an in-
crease of the effective population size. The uniform Bayes-
ian skyride performs slightly worse than its time-aware
analog. The Bayesian skyline plot model also performs
well. However, this method misses the decay phase of
the population dynamics and instead predicts a constant
population size for this time period. The ORMCP model
clearly oversmoothes the effective population size trajec-
tory. This model suggests that the population has been in-
creasing during its entire history and completely misses the
bottleneck component of the demographic history. It is pos-
sible to improve the performance of the ORMCP model by
substantially increasing the prior mean number of change
points in the model (data not shown). However, it is not
clear how to choose an appropriate value of this prior pa-
rameter a priori and post hoc adjustments invalidate infer-
ence by employing the data more than once.

To provide a comparative summary of the perfor-
mance of the Bayesian skyride and MCP models, we report
the percent error (PE) for all simulation scenarios. We de-
fine this PE as

PE5

Z TMRCA

0

jN̂eðtÞ � NeðtÞj
NeðtÞ

dt � 100; ð13Þ
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FIG. 3.—Exponential growth simulation. See figure 2 for the legend explanation.
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where N̂eðtÞ is the estimated posterior median of a population
size trajectory and Ne(t) is a true population size trajectory.
Table 1 reports PEs for the 6 methods and 3 simulation sce-
narios. It is only fair to compare the fixed-tree and BEAST
methods with each other but not across these 2 method
groups. Among the fixed-tree methods, the time-aware
Bayesian skyride is a clear leader according to table 1.
The BEAST Bayesian skyride performs better than the
Bayesian skyline plot for the constant and exponential
growth models. Despite a mild oversmoothing effect, pro-
duced by the Bayesian skyline plot model in the bottleneck
analysis, this method produces PE smaller than the BEAST
Bayesian skyride method in the last simulation scenario.

Because running BEAST is time consuming even un-
der a simple parametric demographic model, we use our
simulation study to investigate the computational cost of
incorporating the Bayesian skyride into BEAST. On
a dual-processor Pentium 3.4 Ghz with 4 GB of RAM,
the Bayesian skyride analysis took 2.75, 2.30, and 2.21 h
for the constant, exponential growth, and bottleneck simu-

lated data sets, respectively. The corresponding running
times for the Bayesian skyline plot with 10 change points
are 1.70, 1.81, and 1.58 h, indicating that the Bayesian sky-
ride method is only slightly slower than the Bayesian sky-
line plot. We expect to further optimize our BEAST
implementation and improve computational efficiency of
the Bayesian skyride.

Population Dynamics of Egyptian HCV

We analyze 63 HCV sequences, sampled in 1993 in
Egypt. Pybus et al. (2003) use this data set to study the pop-
ulation dynamics of Egyptian HCV. The analyzed sequen-
ces are derived from the HCV E1 genomic region. Pybus et
al. (2003) argue that the approximately random sequence
sampling, no sign of population substructure, and other
properties of these HCV sequences make them very suitable
for the coalescent analysis.

We perform a phylogenetic analysis of the HCV se-
quences using the BEAST software package (Drummond
and Rambaut 2007). Following Pybus et al. (2003), we
use a strict molecular clock and the HKY substitution
model (Hasegawa et al. 1985). We put a coalescent prior
with constant population size on genealogies. However,
the wide uniform prior over interval [0, 1000] (measured
in years) on the TMRCA together with the abundant phy-
logenetic information in the HCV sequences should limit
the coalescent prior influence on estimated genealogies.
To estimate branches in units of years, we use a previously
estimatedmutation rate in theHCV E1genomic region,7.9�
10�4 substitutions/site/year (Pybus et al. 2001). For es-
timation of the population dynamics with the fixed-tree
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FIG. 4.—Simulated bottleneck. See figure 2 for the legend explanation.

Table 1
Percent Error in Simulations

Model Constant Exponential Bottleneck

ORMCP 14.0 1.7 7.4
Uniform Bayesian skyride 32.8 1.5 5.9
Time-aware Bayesian skyride 2.8 1.2 4.8
Bayesian skyline plot 38.2 1.6 5.2
BEAST Bayesian skyride 1.7 1.0 5.4

NOTE.—We compare PEs, defined in equation (13), for the ORMCP model,

uniform and time-aware fixed-tree Bayesian skyrides, Bayesian skyline plot, and

BEAST Bayesian skyride.
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Bayesian skyride, we use the summary, majority clade sup-
port genealogy with median node heights depicted in the
top-left plot of figure 5. We also use the BEAST Bayesian
skyride to estimate the effective population size trajectory
and the HCV genealogy simultaneously.

The top-right and bottom-left plots of figure 5 show
the posterior medians and 95% BCIs of Ne(t) under the
time-aware BEAST and fixed-tree Bayesian skyride mod-
els. The similarity between the BEAST and fixed-tree
Bayesian skyride results indicates that tree uncertainty does
not play a significant role in the estimation of the Egyptian
HCV population dynamics. Because time is measured in
years, we estimate the effective population size scaled by
the generation length per year. These scaled estimates
are often interpreted as effective numbers of infections
(Pybus et al. 2001). Welch et al. (2005) provide a theoretical
justification of such an interpretation.

The exponential growth of HCV infections in the 20th
century is the most remarkable aspect of the HCV evolution
in Egypt. Pybus et al. (2003) argue that the exponential
growth of HCV infections is a result of intravenously ad-
ministered parenteral antischistosomal therapy (PAT),
practiced in Egypt from the 1920s to the 1980s. Our tem-
poral smoothing procedure successfully recovers this expo-
nential growth. However, the effective population size
reconstruction is noisier in the time periods preceding
the exponential growth phase due to lack of coalescent
events. Pybus et al. (2003) hypothesize that the effective
number of HCV infections was constant before the start
of the exponential growth phase. We test this hypothesis
using the fixed-tree Bayesian skyride by constraining inter-
coalescent effective population sizes to be equal from the

TMRCA to the year 1920. In terms of our model parame-
ters, this hypothesis translates to H0: c25 � � �5c3: The
Bayes factor of 12,880 in favor of H0 decisively supports
constant population size hypothesis of Pybus et al..

The posterior summary of the effective population size
trajectory under the constrained Bayesian skyride is shown
in the bottom-right plot of figure 5. Enforcing a constant
population size prior to the 1920s generates long-range ef-
fects on the estimation of more recent population sizes due
to the increase in the GMRF precision. Under the uncon-
strained Bayesian skyride, the effective population size tra-
jectory shows a slight decrease in the period 1970–1993.
However, the constrained model predicts a constant popu-
lation size during these years. A gradual transition from the
intravenous to oral administration of the PAT started in the
1970s (Frank et al. 2000). We would like to test whether
this transition caused a significant decrease in the effective
number of HCV infections, seen in the estimates under the
unconstrained Bayesian skyride. Our null hypothesis
H0:c62 , c46, where index 46 corresponds to time period
1960–1977 and index 62 corresponds to time period 1992–
1993. The Bayes factor of only 3 in favor of H0 suggests
that the decay of the HCV effective population size in the
1970–1993 period is not statistically significant.

Intraseason Population Dynamics of Human Influenza

To study intraseason population dynamics of human
influenza, we compile 3 data sets from sequences reported
by Ghedin et al. (2005) that correspond to the 3 flu seasons:
1999–2000, 2001–2002, and 2003–2004. The data sets
consist of 48, 59, and 72 hemagglutinin sequences, respec-
tively. All sequences derive from H3N2 isolates. Sequence
sampling was restricted to New York State. This should di-
minish the effects of geographical population structure on
estimated genealogies. Recombination also should not play
a part in shaping intragenic influenza genealogies because
homologous intragenic recombination is very rare in influ-
enza viruses (Steinhauer and Skehel 2002). Because sam-
pling dates for all analyzed sequences are available, all 3 flu
season data sets are heterochronous.

Similarly to the Egyptian HCV analysis, we obtain
a posterior sample of genealogies using the BEAST con-
stant population size model and Bayesian skyride. In the
latter analysis, we estimate influenza effective population
size trajectory simultaneously with the viral genealogy.
Our model specification of nucleotide evolution is nearly
identical to the HCV analysis. We test the molecular clock
assumption using Bayes factors (Suchard et al. 2003). After
analyzing the intraseason data sets with a lognormal relaxed
clock model, proposed by Drummond et al. (2006), we
compute the Bayes factors in favor of the molecular clock
hypothesis using a harmonic mean estimator. The estimated
Bayes factors (season 1999–2000: 111,000, 2001–2002:
19, and 2003–2004: 16) strongly support the molecular
clock hypothesis in all 3 data sets. Although the molecular
clock together with the heterochronous nature of the data
sets in principle allow us to estimate the mutation rates si-
multaneously with other model parameters, we find that
these intrahost influenza data have little information about
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mutation rates. Therefore, for the mutation rate, we use in-
formative lognormal prior, commensurate with previously
obtained estimates of mutation rate in influenza hemagglu-
tinin genes (Fitch et al. 1997; Yang et al. 2007).

From posterior samples of all model parameters in the
intraseason data sets, we obtain maximum clade support
genealogies with median node heights. We feed these ge-
nealogies, shown in the left column of figure 6, into our
fixed-tree Bayesian skyride procedure. Branch lengths are
measured in units of weeks because these units of time are
commonly used for intraseason surveillance of flu epidem-
ics. The middle column of figure 6 shows the fixed-tree
Bayesian skyride estimates of Ne(t). Results of the BEAST
Bayesian skyride, depicted in the right column of figure 6,
significantly differ from the fixed-tree inference. Such dis-
crepancy is a clear indication that genealogical uncertainty
cannot be ignored during inference of influenza intraseason
population dynamics. Interestingly, applying the fixed-tree
Bayesian skyride to a random subset of genealogies, sampled

under the constant population size model, does not reveal
significant variation of the effective population size trajec-
tory estimates (results not shown). This observation suggests
that joint inference of genealogies and Ne(t) should be pre-
ferred even when the effect of ignoring genealogical uncer-
tainty is not apparent.

Exponentially growing influenza populations suggest
that the viral diversity was increasing before the start of all
3 flu seasons. The posterior medians of the influenza effec-
tive population size trajectories exhibit piecewise exponen-
tial shapes. However, the wide BCIs of Ne(t) prevent us
from studying local features of these curves. These wide
BCIs of the effective population size trajectories appropri-
ately reflect the lack of information about influenza gene-
alogies in the sampled sequences. We only point out that the
BEAST Bayesian skyride results suggest that the influenza
effective population size was growing slower in 2001–2002
than in 1999–2000 and 2003–2004. This is consistent with
the Centers for Disease Control and Prevention surveillance
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data (http://www.cdc.gov/flu/) reporting a significant delay
of flu activity during the 2001–2002 season.

Prior Sensitivity

In Bayesian modeling, it is important to investigate
sensitivity of results to the prior assumptions of the model.
We place a GMRF smoothing prior on log effective pop-
ulation sizes c: This prior informs our model only about the
smoothness of the population size trajectory, leaving the
task of determining an overall level of c to the likelihood.
The GMRF precision parameter s regulates this degree of
smoothness; unfortunately, expert knowledge of s is rarely
known a priori. Using the Egyptian HCV data, we illustrate
the prior and posterior distributions of log s in the left plot
of figure 7. We use the log transformation to mitigate
boundary effects near 0, facilitating interpretability of dis-
tributional summaries. The dramatic difference between the
flat and diffuse prior density and highly peaked posterior
histogram of log s suggests that our data alone contain more
than sufficient information to estimate s.

Recall that in all our analyses we set a5 b5 0.001 in
s’s prior density (10). To investigate the sensitivity of our
results to these hyperprior parameter choices, we reanalyze
the Egyptian HCV data using 5 different values of a: 0.001,
0.002, 0.005, 0.01, and 0.1, leaving b unchanged. For these
values of a, the prior mean of s grows from 1, 2, 4, 10, to
100 respectively. We summarize posterior distributions of
log s in the 5 boxplots on the right side of figure 7. These
boxplots demonstrate that the posterior distribution of log s
hardly changes when we alter the hyperprior parameter a.
We conjecture that this remarkable robustness indicates that
our Bayesian temporal smoothing model is very well suited
for estimating population size dynamics.

Discussion

We present the Bayesian skyride, a novel coalescent-
based, statistical approach for estimating effective popula-
tion size dynamics. In contrast to previously proposed
methods, we explicitly incorporate smoothing into our
Bayesian model via a GMRF prior. This strategy allows
us to regularize the noisy skyline plot estimates of piece-

wise constant effective population size trajectories. We
make our Bayesian skyride time aware using a weighting
scheme based on the sizes of intercoalescent intervals.
As with many other smoothing techniques, our GMRF prior
has a precision parameter s that controls the strength of
smoothness. Estimating this parameter from data alone
can be challenging and often requires injection of prior
knowledge (Bernardinelli et al. 1995). However, we find
that in all our examples, the intercoalescent intervals con-
tain sufficient information about the GMRF precision s,
eliminating the need of informative priors. Therefore, our
method, in contrast to competitors, does not require
subjective decisions from the user. The independence of in-
tercoalescent intervals permits us to use very efficient,
GMRF-tailored algorithms for sampling from the posterior
distribution of the model parameters. This computational
efficiency becomes even more critical for integration of
the Bayesian skyride into a joint Bayesian estimation of ge-
nealogies and population genetics parameters.

We demonstrate that the Bayesian skyride can suc-
cessfully reconstruct effective population size trajectories
under the 3 simulated demographic scenarios. During
our simulations, we find that our time-aware Bayesian sky-
ride is superior to the uniform GMRF prior. Therefore, we
use the former during our analyses of real data sets. The
temporally smoothed scaled effective population size tra-
jectory of the Egyptian HCV demographic history agrees
with previous estimates of Ne(t) remarkably well (Pybus
et al. 2003; Drummond et al. 2005). Using this example,
we illustrate how to formally test one- and two-sided hy-
potheses in our Bayesian skyride framework. Next, we an-
alyze the intraseason population dynamics of human
influenza. We find that fixing a genealogy, estimated under
the constant population size demographic model, leads to
inadequate estimation of Ne(t). The striking difference be-
tween our fixed-tree and BEAST Bayesian skyride methods
highlights the importance of joint estimation of the effective
population size and the genealogy of sampled sequences.

Other building blocks of the coalescent model may
also be needed to accurately determine influenza intrasea-
son population dynamics. Although all influenza sequences
were sampled in the same geographical location, the peri-
odic migrational patterns of the virus may have a significant
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effect on shaping genealogies relating the sampled sequen-
ces. Omitting selection in our coalescent model can also
lead to inaccurate estimation of population dynamics. A
more detailed coalescent analysis of intrahost influenza
evolution should resolve these difficulties.

The influenza example motivates the need for new
statistical tools for quantifying commonalities in multiply
observed demographic histories. Similar repeated evolu-
tionary patterns occur during intrahost HIV evolution
and have important medical implications (Shankarappa
et al. 1999). We envision analyzing such repeated patterns
using a Bayesian hierarchical framework (Kitchen et al.
2004). Such an approach will require an accurate alignment
of observed time intervals and inclusion of external factors
that may effect demographic dynamics. The Bayesian sky-
ride is perfectly suitable for the inclusion of such external
information as covariates in a generalized linear model
framework (MacNab 2003). This proposed methodology
will enable statistical testing of environmental effects on
demographic histories of populations.
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Appendix A: MCMC Sampling Scheme
Fixed Genealogy

We first describe a sampling scheme for the fixed ge-
nealogy case. Here, we represent genealogy g through its
vector of intercoalescent and sampling intervals w. To ap-
proximate the posterior

Prðc; sjwÞ}PrðwjcÞPrðcjsÞPrðsÞ; ðA1Þ

we parallel the block-updating MCMC scheme of Knorr-
Held and Rue (2002). Given current parameter values
ðs; cÞ; we first generate a candidate value for the GMRF
precision, s* 5 sf, where f is drawn from a symmetric pro-
posal distribution with density Pr(f) } fþ 1/f defined on the
interval [1/F, F]. The tuning constant F controls the dis-
tance between the proposed and current values of the
GMRF precision. Conditional on s*, we propose a new state
c� for the vector of log-effective population sizes using
a Gaussian approximation to the full conditional density

Prðcjs�;wÞ}PrðwjcÞPrðcjs�Þ: ðA2Þ

Density (A2) is called a hidden Markov random field be-
cause conditional on the Markov field c; the observed
wks are distributed independently of each other (Rue
et al. 2004). Such a special form of density (A2) allows
one to generate samples from its Gaussian approximation
using computationally efficient algorithms for sparse matrix

computations (Rue 2001). After obtaining a new candidate
state ðs�; c�Þ;we accept or reject it in a Metropolis–Hastings
step (Metropolis et al. 1953; Hastings 1970).

Incorporating Genealogical Uncertainty

So far, we have assumed that the genealogy g is known
and fixed. However, we do not observe genealogies relating
individuals randomly sampled from a population. Instead,
we observe molecular sequence data for each individual on
the tips of an unknown genealogy. Sequence data and ge-
nealogies are connected through the standard assumption
that sequence characters are generated by a mutational pro-
cess that acts along a hidden genealogy. Therefore, the
complete likelihood of observing sequence data D is
Pr(D|g, Q), where Q is a vector of mutational process model
parameters. A priori, we assume that Q and g are indepen-
dent. Probability distribution Pr(Q) depends on the param-
eterization of the mutational process model. We use the
coalescent as a prior for g so that

PrðgjcÞ}PrðwjcÞ; ðA3Þ

where PrðwjcÞ is defined by equation (7). The posterior dis-
tribution of all model parameters becomes

Prðg;Q; cjDÞ}PrðDjg;QÞPrðQÞPrðgjcÞPrðcÞ: ðA4Þ

To approximate this posterior distribution, we equip the
software package BEAST (Drummond and Rambaut
2007) with our GMRF MCMC updating scheme. We then
merge our fixed-tree analysis with BEAST MCMC kernels
for updating Q and g to jointly estimate genealogies and
population size trajectories.

Appendix B: BEAST Implementation

We have implemented the time-aware Bayesian skyride
in the BEAST software package (Drummond and Rambaut
2007). Users may employ the Bayesian skyride both while
assuming a fixed evolutionary tree and while integrating
over all possible trees given molecular sequence data
and a mutational model. Example BEAST XML input
blocks that allow users to place the GMRF prior on effec-
tive population size dynamics and update the field param-
eters are provided below:
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